Boltzmann¶
digraph inheritanced6752ff870 { bgcolor=transparent; rankdir=LR; ratio=expand; size=""; "Boltzmann" [URL="#climlab.radiation.boltzmann.Boltzmann",dirType=back,fillcolor=white,fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=14,height=0.25,shape=box,style="setlinewidth(0.5),filled",target="_top",tooltip="A class for black body radiation."]; "EnergyBudget" -> "Boltzmann" [arrowsize=0.5,dirType=back,style="setlinewidth(0.5)"]; "EnergyBudget" [URL="climlab.process.energy_budget.html#climlab.process.energy_budget.EnergyBudget",dirType=back,fillcolor=white,fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=14,height=0.25,shape=box,style="setlinewidth(0.5),filled",target="_top",tooltip="A parent class for explicit energy budget processes."]; "TimeDependentProcess" -> "EnergyBudget" [arrowsize=0.5,dirType=back,style="setlinewidth(0.5)"]; "Process" [URL="climlab.process.process.html#climlab.process.process.Process",dirType=back,fillcolor=white,fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=14,height=0.25,shape=box,style="setlinewidth(0.5),filled",target="_top",tooltip="A generic parent class for all climlab process objects."]; "TimeDependentProcess" [URL="climlab.process.time_dependent_process.html#climlab.process.time_dependent_process.TimeDependentProcess",dirType=back,fillcolor=white,fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=14,height=0.25,shape=box,style="setlinewidth(0.5),filled",target="_top",tooltip="A generic parent class for all time-dependent processes."]; "Process" -> "TimeDependentProcess" [arrowsize=0.5,dirType=back,style="setlinewidth(0.5)"]; }- class climlab.radiation.boltzmann.Boltzmann(eps=0.65, tau=0.95, **kwargs)[source]¶
Bases:
EnergyBudget
A class for black body radiation.
Implements a radiation subprocess which computes longwave radiation with the Stefan-Boltzmann law for black/grey body radiation.
According to the Stefan Boltzmann law the total power radiated from an object with surface area \(A\) and temperature \(T\) (in unit Kelvin) can be written as
\[P = A \varepsilon \sigma T^4\]where \(\varepsilon\) is the emissivity of the body.
As the
EnergyBudget
of the Energy Balance Model is accounted in unit \(\textrm{energy} / \textrm{area}\) (\(\textrm{W}/ \textrm{m}^2\)) the energy budget equation looks like this:\[C \frac{dT}{dt} = R\downarrow - R\uparrow - H \n\]The
Boltzmann
radiation subprocess represents the outgoing radiation \(R\uparrow\) which then can be written as\[R\uparrow = \varepsilon \sigma T^4\]with state variable \(T\).
Initialization parameters n
An instance of
Boltzmann
is initialized with the following arguments:- Parameters:
Object attributes n
During initialization both arguments described above are created as object attributes which calls their setter function (see below).
- Variables:
- Example:
Replacing an the regular AplusBT subprocess in an energy balance model:
>>> import climlab >>> from climlab.radiation.Boltzmann import Boltzmann >>> # creating EBM model >>> model = climlab.EBM() >>> print model
climlab Process of type <class 'climlab.model.ebm.EBM'>. State variables and domain shapes: Ts: (90, 1) The subprocess tree: top: <class 'climlab.model.ebm.EBM'> diffusion: <class 'climlab.dynamics.diffusion.MeridionalDiffusion'> LW: <class 'climlab.radiation.AplusBT.AplusBT'> albedo: <class 'climlab.surface.albedo.StepFunctionAlbedo'> iceline: <class 'climlab.surface.albedo.Iceline'> cold_albedo: <class 'climlab.surface.albedo.ConstantAlbedo'> warm_albedo: <class 'climlab.surface.albedo.P2Albedo'> insolation: <class 'climlab.radiation.insolation.P2Insolation'>
>>> # creating and adding albedo feedback subprocess >>> LW_boltz = Boltzmann(eps=0.69, tau=0.98, state=model.state, **model.param) >>> # overwriting old 'LW' subprocess with same name >>> model.add_subprocess('LW', LW_boltz) >>> print model
climlab Process of type <class 'climlab.model.ebm.EBM'>. State variables and domain shapes: Ts: (90, 1) The subprocess tree: top: <class 'climlab.model.ebm.EBM'> diffusion: <class 'climlab.dynamics.diffusion.MeridionalDiffusion'> LW: <class 'climlab.radiation.Boltzmann.Boltzmann'> albedo: <class 'climlab.surface.albedo.StepFunctionAlbedo'> iceline: <class 'climlab.surface.albedo.Iceline'> cold_albedo: <class 'climlab.surface.albedo.ConstantAlbedo'> warm_albedo: <class 'climlab.surface.albedo.P2Albedo'> insolation: <class 'climlab.radiation.insolation.P2Insolation'>
- Attributes:
depth
Depth at grid centers (m)
depth_bounds
Depth at grid interfaces (m)
diagnostics
Dictionary access to all diagnostic variables
eps
Property of emissivity parameter.
input
Dictionary access to all input variables
lat
Latitude of grid centers (degrees North)
lat_bounds
Latitude of grid interfaces (degrees North)
lev
Pressure levels at grid centers (hPa or mb)
lev_bounds
Pressure levels at grid interfaces (hPa or mb)
lon
Longitude of grid centers (degrees)
lon_bounds
Longitude of grid interfaces (degrees)
tau
Property of the transmissivity parameter.
timestep
The amount of time over which
step_forward()
is integrating in unit seconds.
Methods
add_diagnostic
(name[, value])Create a new diagnostic variable called
name
for this process and initialize it with the givenvalue
.add_input
(name[, value])Create a new input variable called
name
for this process and initialize it with the givenvalue
.add_subprocess
(name, proc)Adds a single subprocess to this process.
add_subprocesses
(procdict)Adds a dictionary of subproceses to this process.
compute
()Computes the tendencies for all state variables given current state and specified input.
compute_diagnostics
([num_iter])Compute all tendencies and diagnostics, but don't update model state.
declare_diagnostics
(diaglist)Add the variable names in
inputlist
to the list of diagnostics.declare_input
(inputlist)Add the variable names in
inputlist
to the list of necessary inputs.integrate_converge
([crit, verbose])Integrates the model until model states are converging.
integrate_days
([days, verbose])Integrates the model forward for a specified number of days.
integrate_years
([years, verbose])Integrates the model by a given number of years.
remove_diagnostic
(name)Removes a diagnostic from the
process.diagnostic
dictionary and also delete the associated process attribute.remove_subprocess
(name[, verbose])Removes a single subprocess from this process.
set_state
(name, value)Sets the variable
name
to a new statevalue
.set_timestep
([timestep, num_steps_per_year])Calculates the timestep in unit seconds and calls the setter function of
timestep()
step_forward
()Updates state variables with computed tendencies.
to_xarray
([diagnostics])Convert process variables to
xarray.Dataset
format.- property eps¶
Property of emissivity parameter.
- Getter:
Returns the albedo value which is stored in attribute
self._eps
- Setter:
sets the emissivity which is addressed as
self._eps
to the new valueupdates the parameter dictionary
self.param['eps']
- Type: