energy_budget¶
digraph inheritancea43b3ab290 { bgcolor=transparent; rankdir=LR; ratio=expand; size=""; "EnergyBudget" [URL="#climlab.process.energy_budget.EnergyBudget",dirType=back,fillcolor=white,fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=14,height=0.25,shape=box,style="setlinewidth(0.5),filled",target="_top",tooltip="A parent class for explicit energy budget processes."]; "TimeDependentProcess" -> "EnergyBudget" [arrowsize=0.5,dirType=back,style="setlinewidth(0.5)"]; "ExternalEnergySource" [URL="#climlab.process.energy_budget.ExternalEnergySource",dirType=back,fillcolor=white,fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=14,height=0.25,shape=box,style="setlinewidth(0.5),filled",target="_top",tooltip="A fixed energy source or sink to be specified by the user."]; "EnergyBudget" -> "ExternalEnergySource" [arrowsize=0.5,dirType=back,style="setlinewidth(0.5)"]; "Process" [URL="climlab.process.process.html#climlab.process.process.Process",dirType=back,fillcolor=white,fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=14,height=0.25,shape=box,style="setlinewidth(0.5),filled",target="_top",tooltip="A generic parent class for all climlab process objects."]; "TimeDependentProcess" [URL="climlab.process.time_dependent_process.html#climlab.process.time_dependent_process.TimeDependentProcess",dirType=back,fillcolor=white,fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=14,height=0.25,shape=box,style="setlinewidth(0.5),filled",target="_top",tooltip="A generic parent class for all time-dependent processes."]; "Process" -> "TimeDependentProcess" [arrowsize=0.5,dirType=back,style="setlinewidth(0.5)"]; }- class climlab.process.energy_budget.EnergyBudget(**kwargs)[source]¶
Bases:
TimeDependentProcess
A parent class for explicit energy budget processes.
This class solves equations that include a heat capacitiy term like \(C \\frac{dT}{dt} = \\textrm{flux convergence}\)
In an Energy Balance Model with model state \(T\) this equation will look like this:
\[\begin{split}C \\frac{dT}{dt} = R\downarrow - R\uparrow - H \n \\frac{dT}{dt} = \\frac{R\downarrow}{C} - \\frac{R\uparrow}{C} - \\frac{H}{C}\end{split}\]Every EnergyBudget object has a
heating_rate
dictionary with items corresponding to each state variable. The heating rate accounts the actual heating of a subprocess, namely the contribution to the energy budget of \(R\\downarrow, R\\uparrow\) and \(H\) in this case. The temperature tendencies for each subprocess are then calculated through dividing the heating rate by the heat capacitiy \(C\).Initialization parameters n
An instance of
EnergyBudget
is initialized with the forwarded keyword arguments**kwargs
of the corresponding children classes.Object attributes n
Additional to the parent class
TimeDependentProcess
following object attributes are generated or modified during initialization:- Variables:
- Attributes:
depth
Depth at grid centers (m)
depth_bounds
Depth at grid interfaces (m)
diagnostics
Dictionary access to all diagnostic variables
input
Dictionary access to all input variables
lat
Latitude of grid centers (degrees North)
lat_bounds
Latitude of grid interfaces (degrees North)
lev
Pressure levels at grid centers (hPa or mb)
lev_bounds
Pressure levels at grid interfaces (hPa or mb)
lon
Longitude of grid centers (degrees)
lon_bounds
Longitude of grid interfaces (degrees)
timestep
The amount of time over which
step_forward()
is integrating in unit seconds.
Methods
add_diagnostic
(name[, value])Create a new diagnostic variable called
name
for this process and initialize it with the givenvalue
.add_input
(name[, value])Create a new input variable called
name
for this process and initialize it with the givenvalue
.add_subprocess
(name, proc)Adds a single subprocess to this process.
add_subprocesses
(procdict)Adds a dictionary of subproceses to this process.
compute
()Computes the tendencies for all state variables given current state and specified input.
compute_diagnostics
([num_iter])Compute all tendencies and diagnostics, but don't update model state.
declare_diagnostics
(diaglist)Add the variable names in
inputlist
to the list of diagnostics.declare_input
(inputlist)Add the variable names in
inputlist
to the list of necessary inputs.integrate_converge
([crit, verbose])Integrates the model until model states are converging.
integrate_days
([days, verbose])Integrates the model forward for a specified number of days.
integrate_years
([years, verbose])Integrates the model by a given number of years.
remove_diagnostic
(name)Removes a diagnostic from the
process.diagnostic
dictionary and also delete the associated process attribute.remove_subprocess
(name[, verbose])Removes a single subprocess from this process.
set_state
(name, value)Sets the variable
name
to a new statevalue
.set_timestep
([timestep, num_steps_per_year])Calculates the timestep in unit seconds and calls the setter function of
timestep()
step_forward
()Updates state variables with computed tendencies.
to_xarray
([diagnostics])Convert process variables to
xarray.Dataset
format.
- class climlab.process.energy_budget.ExternalEnergySource(**kwargs)[source]¶
Bases:
EnergyBudget
A fixed energy source or sink to be specified by the user.
Object attributes
Additional to the parent class
EnergyBudget
the following object attribute is modified during initialization:- Variables:
heating_rate (dict) – energy share dictionary for this subprocess is set to zero for every model state.
After initialization the user should modify the fields in the
heating_rate
dictionary, which contain heating rates in unit \(\textrm{W}/ \textrm{m}^2\) for all state variables.- Example:
Creating an Energy Balance Model with a uniform external energy source of \(10 \ \textrm{W}/ \textrm{m}^2\) for all latitudes:
>>> import climlab >>> from climlab.process.energy_budget import ExternalEnergySource >>> import numpy as np >>> # create model & external energy subprocess >>> model = climlab.EBM(num_lat=36) >>> ext_en = ExternalEnergySource(state= model.state,**model.param) >>> # modify external energy rate >>> ext_en.heating_rate.keys() ['Ts'] >>> np.squeeze(ext_en.heating_rate['Ts']) Field([-0., -0., -0., -0., -0., -0., -0., -0., -0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -0., -0., -0., -0., -0., -0., -0., -0., -0.]) >>> ext_en.heating_rate['Ts'][:]=10 >>> np.squeeze(ext_en.heating_rate['Ts']) Field([ 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.]) >>> # add subprocess to model >>> model.add_subprocess('ext_energy',ext_en) >>> print model climlab Process of type <class 'climlab.model.ebm.EBM'>. State variables and domain shapes: Ts: (36, 1) The subprocess tree: top: <class 'climlab.model.ebm.EBM'> diffusion: <class 'climlab.dynamics.diffusion.MeridionalDiffusion'> LW: <class 'climlab.radiation.AplusBT.AplusBT'> ext_energy: <class 'climlab.process.energy_budget.ExternalEnergySource'> albedo: <class 'climlab.surface.albedo.StepFunctionAlbedo'> iceline: <class 'climlab.surface.albedo.Iceline'> cold_albedo: <class 'climlab.surface.albedo.ConstantAlbedo'> warm_albedo: <class 'climlab.surface.albedo.P2Albedo'> insolation: <class 'climlab.radiation.insolation.P2Insolation'>
- Attributes:
depth
Depth at grid centers (m)
depth_bounds
Depth at grid interfaces (m)
diagnostics
Dictionary access to all diagnostic variables
input
Dictionary access to all input variables
lat
Latitude of grid centers (degrees North)
lat_bounds
Latitude of grid interfaces (degrees North)
lev
Pressure levels at grid centers (hPa or mb)
lev_bounds
Pressure levels at grid interfaces (hPa or mb)
lon
Longitude of grid centers (degrees)
lon_bounds
Longitude of grid interfaces (degrees)
timestep
The amount of time over which
step_forward()
is integrating in unit seconds.
Methods
add_diagnostic
(name[, value])Create a new diagnostic variable called
name
for this process and initialize it with the givenvalue
.add_input
(name[, value])Create a new input variable called
name
for this process and initialize it with the givenvalue
.add_subprocess
(name, proc)Adds a single subprocess to this process.
add_subprocesses
(procdict)Adds a dictionary of subproceses to this process.
compute
()Computes the tendencies for all state variables given current state and specified input.
compute_diagnostics
([num_iter])Compute all tendencies and diagnostics, but don't update model state.
declare_diagnostics
(diaglist)Add the variable names in
inputlist
to the list of diagnostics.declare_input
(inputlist)Add the variable names in
inputlist
to the list of necessary inputs.integrate_converge
([crit, verbose])Integrates the model until model states are converging.
integrate_days
([days, verbose])Integrates the model forward for a specified number of days.
integrate_years
([years, verbose])Integrates the model by a given number of years.
remove_diagnostic
(name)Removes a diagnostic from the
process.diagnostic
dictionary and also delete the associated process attribute.remove_subprocess
(name[, verbose])Removes a single subprocess from this process.
set_state
(name, value)Sets the variable
name
to a new statevalue
.set_timestep
([timestep, num_steps_per_year])Calculates the timestep in unit seconds and calls the setter function of
timestep()
step_forward
()Updates state variables with computed tendencies.
to_xarray
([diagnostics])Convert process variables to
xarray.Dataset
format.